爱普生压电喷头行业资讯
2024-05-03
在高能球磨过程中粉末在较高能量碰撞作用下产生大量的缺陷(空位、位错等), 因此,机械合金化所诱发的固态反应实际上是缺陷能和碰撞能共同作用的结果。所以它不再需要空位的形成能,扩散所要求的总的激活能降低,见图1(c)。
图1 扩散激活能组成示意图
根据Arrhenius定律,扩散系数D与激活能的关系为: D=D0e(-DEa/RT) (1) D为扩散常数;DEa为扩散激活能,R为气体常数,T为绝对温度。 对于空位机制代入式(1) D=D0e[-(DEa+DEm)/RT] (2) 此式表明:对于同一D值减少激活能如减少空位产生激活能,就意味着将会有更多的空位与近邻的扩散原子发生换位,降低了原子的扩散势垒,增大了空位浓度,使得扩散系数增大。因此通过减少DEf有可能使DEm显著降低在高能球磨过程中,降低扩散激活能是提高扩散的主要途径,对于热激活扩散,晶体缺陷很快被退火消除,缺陷在扩散均匀化退火过程中贡献很小。而对于高能球磨,缺陷密度随球磨时间的增加而增加;因而对于高能球磨过程中的扩散均匀化动力学过程缺陷起主要作用。 通过上述理论分析可以得出,室温球磨时,虽然粉末本身的温升不高,但由于产生了大量的缺陷(空位) ,从而增强了元素的扩散能力,使本来在高温下才能发生的过程在室温下也有可能实现。一些研究者对经不同高能球磨的Al-Ti-C粉料混合物,采用差热分析和X射线结合方法分析认为,Al-Ti-C粉料经高能球磨以后,使得Al-Ti-C合成反应激活能降低。从而在较低温度下就可得到性能较好的复合材料。也有研究者通过高能球磨的方法用Ti和C粉末在室温下合成了纳米级TiC晶粒。实验结果表明:用机械合金化(MA)法可以在比较短的时间内合成TiC粉末,即,经过高能球磨的粉末由于晶粒的细化,使得反应界面面积大大增加,增大了表面能,并且动态地保持未反应的新鲜界面相接触,再加上碰撞过程中局部的温度升高,使TiC粉末的一些结构参数发生了改变,扩散距离减小,缺陷密度增大,促进了扩散,增大了固态反应的反应动力,从而诱发低温下的自蔓延反应合成。 3 活度控制的金属相变机理 机械合金化过程中的金属相变有别于常见的固态相变,突出表现在其非平衡性和强制性。相变产物常常为过饱和固溶体、非晶等非平衡相,也可能形成非晶金属间化合物等。文献对机械合金化过程中的金属相变作了比较详细的介绍。金属相变理论认为,溶质原子的活度决定组元的化学势的高低。活度可以用下式表示: a=P/P0 (3) P和P0分别为溶质在合金中和处于单质状态的蒸汽压,在热力学平衡条件下,0此外,机械合金化过程产生的微小晶粒中的大量位错将使晶界附近出现一个局部畸变区,这相当于使晶界变宽了一些,有可能使溶质原子在晶界中偏聚量增大,从而使溶质的表观固溶度增加。如Fe-Cu系合金机械合金化后,形成了固溶过量Fe的过饱和Cu固溶体。国内一些研究者在Al-Ti合金粉末的高能球磨实验中发现,938K时Ti在Al 中的平衡固溶度仅有0.7%(摩尔分数),而在球磨过程中,Ti在Al中的固溶度却超过3.6%。而国外研究者通过对Cu-5%Nb和Cu-10%Nb球磨后发现,Nb全部固溶形成Cu-Nb单相固溶体。在有些合金系中,高能球磨后还会形成非晶和纳米晶过饱和固溶体两相混合物。还有研究表明,几乎所有的合金体系在高能球磨后,都能够形成过饱和固溶体。 4 结论 总之,近年来国内外在MA的理论与应用研究方面取得了很大进展。但是由于MA过程的复杂性,尚无成熟的理论,除了上述理论外还有层扩散理论、多晶约束理论、自助放热反应等理论。因此,对应于不同成分的粉末球磨,其反应机理也是不一样的;同时,相同粉系的机械合金化过程也有可能是几种机理共同作用的结果。



